Chemoenzymatic Synthesis of the 2,3- and 3,4-*cis*-Dihydrodiol Enantiomers of Monosubstituted Benzenes

D. R. Boyd,* N. D. Sharma, and S. A. Barr

School of Chemistry, Queen's University of Belfast Belfast BT9 5AG, U.K

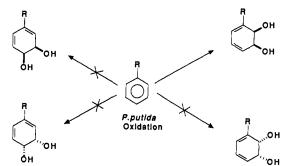
H. Dalton* and J. Chima

Department of Biological Sciences, University of Warwick Coventry CV4 7AL, U.K

G. Whited and R. Seemayer

Genencor International Inc., 180 Kimball Way South San Francisco, California 94080

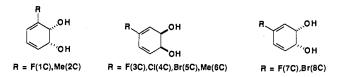
Received November 3, 1993


Mutant strains of *Pseudomonas putida* (e.g., UV4¹ and 39/ D^2) have earlier been used to produce 2,3-*cis*-dihydrodiols from monosubstituted arene substrates. Single enantiomers of the configurations shown for 2,3-*cis*-dihydrodiols in Scheme 1, with the exception of the *cis*-dihydrodiol from fluorobenzene,³ are routinely obtained in good yields without the isomeric 3,4-*cis*-dihydrodiol enantiomers.

This report highlights how a series of disubstituted iodobenzene cis-diol metabolites, obtained using intact cells of *P. putida* UV4¹ and *Escherichia coli* JM109 (pDTG601, containing the tod C1C2BA genes encoding toluene dioxygenase from *P. putida* F1⁴), can be conveniently converted into novel and useful⁵ cisdiols by facile removal of the iodine atom. The cis-dihydrodiol metabolites **1B-8B** obtained (Table 1) were analyzed for enantiomeric excess (% ee), by chiral stationary phase HPLC using a Chiralcel OJ column⁶ and ¹H-NMR spectroscopy of the di-MTPA esters of the 4-phenyl-1,2,4-triazoline-3,5-dione adducts.³ Absolute configurations were determined by X-ray crystallography (**4B**, **6B**), ¹H-NMR spectral analysis of the cycloadduct di-MTPA ester derivatives (**1B-7B**), and direct comparison of $[\alpha]_D$ values (**1C-3C**, **5C**, **7C**, and **8C**) with those of the corresponding enantiomers.³

Substituted iodobenzene substrates were selected for metabolism by *P. putida* UV4 and *E. coli* JM109 (pDTG601) since both mutant strains of bacteria are known to accumulate the corresponding *cis*-dihydrodiols due to the lack of any *cis*-diol dehydrogenase enzyme activity. Furthermore, from recent studies⁶ it has been demonstrated that (i) a larger atom or substituent, e.g., an iodine atom, can be a controlling factor in facial selectivity during enzyme-catalyzed *cis*-dihydrodiol formation from mono- and 1,4-disubstituted arene oxidations, and (ii) an iodine substituent on a *cis*-dihydrodiol can be readily substituted by other groups.⁷ Metabolism of the 1,4-disubstituted

(4) Zylstra, G. J.; Gibson, D. T. J. Biol. Chem. 1989, 264, 14940.


(6) Boyd, D. R.; Sharma, N. D.; Hand, M. V.; Groocock, M. R.; Kerley, N. A.; Dalton, H.; Chima, J.; Sheldrake, G. N. J. Chem. Soc., Chem. Commun. 1993, 974. Scheme 1

benzene substrates 1A and 2A gave a strong preference for the *cis*-diol enantiomers (+)-1B (88%) and (+)-2B (80 and >98%) (Table 1).

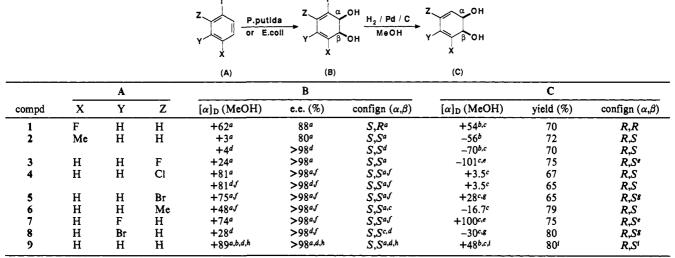
Selective catalytic hydrogenolysis (H₂, 3% Pd/C, room temperature, 1 atm, MeOH containing NaOAc and traces of quinoline) of *cis*-dihydrodiols (+)-1B (88% ee) and (+)-2B (80 and >98% ee) gave the 2,3-*cis*-dihydrodiols of fluorobenzene ((+)-1C) and toluene ((-)-2C). Recrystallization of the chromatographically purified reaction mixture gave enantiopure samples of (+)-1C and (-)-2C of opposite absolute configuration to those reported as normal metabolites of fluorobenzene and toluene.³

Metabolism of the 1,2-disubstituted arenes **3A-6A** produced a preponderance of the *cis*-diol regioisomers **3B-6B** (*ca.* 95%, by ¹H-NMR and GC/MS analysis). This selectivity for the C=C bond proximate to the larger iodine substituent is consistent with the dominant regiodirecting effect of substituent size during enzyme-catalyzed oxidation, i.e., *cis*-dihydrodiol formation. Since the *cis*-dihydrodiol products **3B-6B** were found to be enantiopure, the marked influence of substituent size on facial stereoselectivity⁶ is once again emphasized.

Replacement of the iodine substituent by a hydrogen atom on the cis-dihydrodiol regioisomers **3B-6B**, using the hydrogenolysis procedure, yielded the hitherto unavailable 3,4-cis-dihydrodiols 3C-6C. Biotransformation of the 1,3-disubstituted arenes 7A and 8A, as expected, yielded cis-dihydrodiols mainly (ca. 95%) through oxidation of the C=C bond closest to the larger iodine substituent. The preferential regioselectivity and exclusive facial stereoselectivity shown during *cis*-dihydrodiol formation from 1,2-disubstituted (3A-6A) and 1,3-disubstituted (7A,8A) arenes, allied to the facial stereoselectivity observed during cis-dihydrodiol formation from monosubstituted³ or 1,4-disubstituted arenes,⁶ e.g., 1A and 2A, support the view that the larger iodine substituent exerts a dominant influence during dioxygenase enzyme-catalyzed cis-dihydrodiol formation in both P. putida UV4 and E. coli JM109 (pDTG601). Hydrogenolysis of the cis-diols 7B and 8B gave the opposite enantiomers (+)-7C and (-)-8C of the 3,4cis-dihydrodiols (-)-3C and (+)-5C.

The results contained in this report demonstrate that it is now possible to obtain 2,3- and 3,4-cis-dihydrodiols of either enantiomeric form in a predictable manner by careful selection of the substrates and hydrogenolysis of the resulting metabolites. It is noteworthy that the major influence of larger substituents on the regio- and stereoselectivity of cis-dihydrodiol formation observed in *P. putida* UV4⁶ also appears to be applicable to the substrates

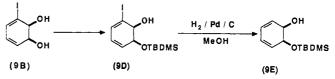
(7) Boyd, D. R.; Hand, M. V.; Sharma, N. D.; Chima, J.; Dalton, H.; Sheldrake, G. N. J. Chem. Soc., Chem. Commun. 1991, 1630.


⁽¹⁾ Ballard, D. G. H.; Courtis, A.; Shirley, I. M.; Taylor, S. C. J. Chem. Soc., Chem. Commun. 1983, 954.

⁽²⁾ Gibson, D. T.; Hensley, M.; Yoshioka, H.; Mabry, T. J. Biochemistry 1970, 9, 1626.

⁽³⁾ Boyd, D. R.; Dorrity, M. R. J.; Hand, M. V.; Malone, J. F.; Sharma, N. D.; Dalton, H.; Gray, D. J.; Sheldrake, G. N. J. Am. Chem. Soc. 1991, 113, 666.

⁽⁵⁾ Widdowson, D. A.; Ribbons, D. W.; Thomas, S. D. Janssen Chim. Acta 1990, 8, 3. Carless, H. A. J. Tetrahedron: Asymmetry 1992, 3, 795. Sheldrake, G. N. In Chirality in Industry: The Commercial Manufacture and Applications of Optically Active Compounds; Collins, A. N., Sheldrake, G. N., Crosby, J., Eds.; Wiley-Interscience: New York, 1992; Chapter 6. Brown, S. M.; Hudlicky, T. In Organic Synthesis: Theory and Applications; JAI Press Inc.: Greenwich, CT, 1993; Vol. II, p 113.
(6) Boyd, D. R.; Sharma, N. D.; Hand, M. V.; Grococck, M. R.; Kerley,



^a Obtained from *P. putida* UV4. ^b In CHCl₃ solution, ^c >98% e.e. ^d Obtained from *E. coli* JM109 (pDTG601). ^e Enantiomeric pair (3C and 7C). ^f Obtained on the major (>95%) regioisomer shown. ^g Enantiomeric pair (5C and 8C). ^h Mono-TBDMS derivative, 9D. ⁱ Mono-TBDMS derivative, 9E.

metabolized to *cis*-dihydrodiols by *E. coli* JM109 (pDTG601). While the results obtained using intact cells of either strain appear to be similar, minor differences, e.g., the higher % ee value obtained for *cis*-diol **2B** using *E. coli* JM109 (pDTG601), were noted.

A previous successful attempt to desymmetrize the *cis*-diol metabolite of benzene, *cis*-cyclohexa-3,5-diene-1,2-diol, involved enzyme-catalyzed conversion to the β -monogalactosides using a β -galactosidase from *E. coli*, followed by HPLC separation of the diastereoisomers.⁸ As an alternative approach, the *cis*-dihydrodiol metabolite of iodobenzene (9A) was converted exclusively to the mono *tert*-butyldimethylsilyl(TBDMS) ether derivative (>95% yield) at the β -position (9D). The latter compound was then hydrogenolyzed to yield the mono-TBDMS

derivative of cis-cyclohexa-3,5-diene-1,2-diol (9E). The chiral TBDMS derivative of benzene 1,2-cis-dihydrodiol, 9E, and the new range of 2,3- and 3,4-cis-dihydrodiols available from the present study (1C-8C) should prove useful chiral synthesis of target molecules (e.g., sugars, cyclitols, alkaloids) of the type exemplified in recent reviews.⁵

Acknowledgment. We thank DED/Technology Board NI (N.D.S.) and the SERC Biotechnology Directorate (S.A.B. and J.C.) for financial support.

⁽⁸⁾ Crout, D. G. H.; MacManus, D. A.; Critchley, P. J. Chem. Soc., Chem. Commun. 1991, 376.